804 research outputs found

    Spatial Structures and Giant Number Fluctuations in Models of Active Matter

    Full text link
    The large scale fluctuations of the ordered state in active matter systems are usually characterised by studying the "giant number fluctuations" of particles in any finite volume, as compared to the expectations from the central limit theorem. However, in ordering systems, the fluctuations in density ordering are often captured through their structure functions deviating from Porod law. In this paper we study the relationship between giant number fluctuations and structure functions, for different models of active matter as well as other non-equilibrium systems. A unified picture emerges, with different models falling in four distinct classes depending on the nature of their structure functions. For one class, we show that experimentalists may find Porod law violation, by measuring subleading corrections to the number fluctuations.Comment: 5 pages, 3 figure

    Violation of Porod law in a freely cooling granular gas in one dimension

    Full text link
    We study a model of freely cooling inelastic granular gas in one dimension, with a restitution coefficient which approaches the elastic limit below a relative velocity scale v. While at early times (t << 1/v) the gas behaves as a completely inelastic sticky gas conforming to predictions of earlier studies, at late times (t >> 1/v) it exhibits a new fluctuation dominated phase ordering state. We find distinct scaling behavior for the (i) density distribution function, (ii) occupied and empty gap distribution functions, (iii) the density structure function and (iv) the velocity structure function, as compared to the completely inelastic sticky gas. The spatial structure functions (iii) and (iv) violate the Porod law. Within a mean-field approximation, the exponents describing the structure functions are related to those describing the spatial gap distribution functions.Comment: 4 pages, 5 figure

    The Reconstruction of Supersymmetric Theories at High Energy Scales

    Get PDF
    The reconstruction of fundamental parameters in supersymmetric theories requires the evolution to high scales, where the characteristic regularities in mechanisms of supersymmetry breaking become manifest. We have studied a set of representative examples in this context: minimal supergravity and a left--right symmetric extension; gauge mediated supersymmetry breaking; and superstring effective field theories. Through the evolution of the parameters from the electroweak scale the regularities in different scenarios at the high scales can be unravelled if precision analyses of the supersymmetric particle sector at e+ e- linear colliders are combined with analyses at the LHC.Comment: 36 pages, latex, 6 figure

    Majoron emission in muon and tau decays revisited

    Get PDF
    In models where the breaking of lepton number is spontaneous a massless Goldstone boson, the Majoron (JJ), appears. We calculate the theoretically allowed range for the branching ratios of Majoron emitting charged lepton decays, such as Br(μeJ\mu \to e J) and Br(μeJγ\mu \to e J \gamma), in a supersymmetric model with spontaneous breaking of R-parity. Br(μeJ\mu\to eJ) is maximal in the same region of parameter space for which the lightest neutralino decays mainly invisibly. A measurement of Br(μeJ\mu\to eJ) thus potentially provides information on R-parity violation complementary to accelerator searches. We also briefly discuss existing bounds and prospects for future improvements on the Majoron coupling to charged leptons.Comment: 9 pages, 4 figure

    Selectron Pair Production at e-e- and e+e- Colliders with Polarized Beams

    Get PDF
    We investigate selectron pair production and decay in e-e- scattering and e+e- annihilation with polarized beams taking into account neutralino mixing as well as ISR and beamstrahlung corrections. One of the main advantages of having both modes at disposal is their complementarity concerning the threshold behaviour of selectron pair production. In e-e- the cross sections at threshold for seleectron_R selectron_R and selectron_L selectron_L rise proportional to the momentum of the selectron and in e+ e- that for selectron_R selectron_L. Measurements at threshold with polarized beams can be used to determine the selectron masses precisely. Moreover we discuss how polarized electron and positron beams can be used to establish directly the weak quantum numbers of the selectrons. We also use selectron pair production to determine the gaugino mass parameter M_1. This is of particular interest for scenarios with non-universal gaugino masses at a high scale resulting in |M_1| << |M_2| at the electroweak scale. Moreover, we consider also the case of a non-vanishing selectron mixing and demonstrate that it leads to a significant change in the phenomenology of selectrons.Comment: LaTex, 23 pages, 14 figures, v2, typos corrected, version to appear in Eur.Phys.J.

    R-parity violation: Hide & Seek

    Get PDF
    We point out that, if R-parity is broken spontaneously, the neutralino can decay to the final state majoron plus neutrino, which from the experimental point of view is indistinguishable from the standard missing momentum signal of supersymmetry. We identify the regions of parameter space where this decay mode is dominant and show that they are independent of R-parity conserving SUSY parameters. Thus, (a) only very weak limits on R-parity violating couplings can be derived from the observation of missing momentum events and (b) at future collider experiments huge statistics might be necessary to establish that R-parity indeed is broken. Parameter combinations which give calculated relic neutralino density larger than the measured dark matter density in case of conserved R-parity are valid points in this scenario and their phenomenology at the LHC deserves to be studied.Comment: 8 pages, 2 figures; ref. added; matches published version (title changed in the published version

    Uncertainties in Relic Density Calculations in mSUGRA

    Full text link
    We compare the relic density of neutralino dark matter within the minimal supergravity model (mSUGRA) using four different public codes for supersymmetric spectra evaluation. While the predictions for the relic density of neutralinos are rather stable in most of the mSUGRA space, it is in the most physically interesting regions that large discrepancies can be observed, in particular the focus point, large tan beta and coannihilation regions.Comment: 6 pages, 3 figure

    Analysis of enhanced tan(beta) corrections in MFV GUT scenarios

    Full text link
    We analyse a minimal supersymmetric standard model (MSSM) taking a minimal flavour violation (MFV) structure at the GUT scale. We evaluate the parameters at the electroweak scale taking into account the full flavour structure in the evolution of the renormalization group equations. We concentrate mainly on the decay Bs -> mu mu and its correlations with other observables like b -> s gamma, b -> s l l, Delta M_Bs and the anomalous magnetic moment of the muon. We restrict our analysis to the regions in parameter space consistent with the dark matter constraints. We find that the BR(Bs -> mu mu) can exceed the current experimental limit in the regions of parameter space which are allowed by all other constraints thus providing an additional bound on supersymmetric parameters. This holds even in the constrained MSSM. Assuming an hypothetical measurement of BR(Bs -> mu mu) ~ 10^-7 we analyse the predicted MSSM spectrum and flavour violating decay modes of supersymmetric particles which are found to be small.Comment: 47 pages, 16 figures (best viewed printed or in pdf format), updated lattice inputs used, version submitted to PR

    Reconstructing Supersymmetry at ILC/LHC

    Full text link
    Coherent analyses of experimental results from LHC and ILC will allow us to draw a comprehensive and precise picture of the supersymmetric particle sector. Based on this platform the fundamental supersymmetric theory can be reconstructed at the high scale which is potentially close to the Planck scale. This procedure will be reviewed for three characteristic examples: minimal supergravity as the paradigm; a left-right symmetric extension incorporating intermediate mass scales; and a specific realization of string effective theories.Comment: published in Proceedings of the Ustron Conference 2005; technical LaTeX problem correcte
    corecore